MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guía de usuario Pagina 461

  • Descarga
  • Añadir a mis manuales
  • Imprimir
  • Pagina
    / 531
  • Tabla de contenidos
  • SOLUCIÓN DE PROBLEMAS
  • MARCADORES
  • Valorado. / 5. Basado en revisión del cliente
Vista de pagina 460
Using Akaike’s Criteria to Valida te Models
Akaike’s Information Criterion (AIC) is d ened by the following equation:
AIC V
d
N
=+log
2
where V is the loss function, d is the number of estimated parameters, and N
is the number of values in the estim ation data set.
The loss function V is dened by the following equation:
Vtt
N
NN
T
N
=
()()
()
det , ,
1
1
εθ εθ
where
θ
N
represents the estimated parameters.
For d<<N:
AIC V
d
N
=+
log 1
2
Note AIC is approximately equal to log(FPE).
Computing AIC
Use the ai c command to compute Akaike’s Information Criterion (AIC) for
oneormorelinearornonlinearmodels,asfollows:
AIC = aic(m1,m2,m3,...,mN)
According to Akaike’s theory, the most accurate model has the smallest AIC.
8-63
Vista de pagina 460
1 2 ... 456 457 458 459 460 461 462 463 464 465 466 ... 530 531

Comentarios a estos manuales

Sin comentarios