MATLAB FINANCIAL DERIVATIVES TOOLBOX Manual de usuario Pagina 115

  • Descarga
  • Añadir a mis manuales
  • Imprimir
  • Pagina
    / 119
  • Tabla de contenidos
  • MARCADORES
  • Valorado. / 5. Basado en revisión del cliente
Vista de pagina 114
114
ReW
T
=
1=
I
T
NW
and for the case of the three assets in an analytic form:
BCCBACCAABBA
CC
BBAA
w
swwswwswwswswswmin
i
222
222222
+++++
s.t.
R)r(Ew)r(Ew)r(Ew
CCBBAA
=++
1=++
CBA
www
Note: If we do not use the first constraint and in the absence of a risk-free
rate we will get the minimum variance portfolio. It is actually advisable to
first get the minimum variance portfolio before we proceed in a real problem.
Then, by changing the level of desire return, we trace points on the efficient
frontier.
To solve this problem, we make two simplifications to the problem. First we
replace everywhere
C
w with
B
A
ww 1 . Second, we rearrange the
constraint:
R)r(Ew)r(Ew)r(Ew
CCBBAA
=++
to
0=++ )r(Ew)r(Ew)r(EwR
CCBBAA
and since it equals zero, we multiply it with a constant ? and we get:
0=++ ))r(Ew)r(Ew)r(EwR(?
CCBBAA
Vista de pagina 114
1 2 ... 110 111 112 113 114 115 116 117 118 119

Comentarios a estos manuales

Sin comentarios